Name:

Please be sure to read each question carefully and show ALL of your work.

Problem 1: Find the solution set of the following system of equations:

$$x_1 + 3x_2 = 4 -2x_1 - 5x_2 = -7 x_1 + 2x_2 = 2$$

Problem 2: Determine if the set of vectors $\{v_1, v_2, v_3\}$ is a linearly independent set. If they are **not** linearly independent, find scalars c_1, c_2 , and c_3 (not all zero) such that $c_1v_1 + c_2v_2 + c_3v_3 = 0$.

$$v_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 4\\-1\\2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -2\\1\\-0 \end{bmatrix}$$

Problem 3: Solve the matrix equation $A\mathbf{x} = \mathbf{b}$, where A and **b** are given below. Express your solutions in parametric vector form.

$$A = \begin{bmatrix} 2 & 1 & 1 & 3 \\ -1 & 2 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Problem 4: Let A be the linear transformation defined by the matrix below. Find the domain and codomain of A.

$$A = \begin{bmatrix} 1 & -1 & 1 & 1 & 2 \\ 0 & 0 & 2 & -3 & 7 \\ 4 & -3 & 0 & 1 & 0 \end{bmatrix}$$

Problem 5: For the following two problems, determine the matrix that represents the given linear transformation T.

a) T is a linear transformation such that $T(\mathbf{e_1}) = \begin{bmatrix} 1\\3\\1 \end{bmatrix}$ and $T(\mathbf{e_2}) = \begin{bmatrix} -1\\0\\9 \end{bmatrix}$.

b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the linear transformation that **reflects** vectors across the x-axis.

Problem 6: Calculate the inverse of each of the following matrices.

a) $A = \begin{bmatrix} 2 & 3 \\ -1 & -1 \end{bmatrix}$

b)
$$B = \begin{bmatrix} 3 & 3 & 1 \\ 0 & 1 & 2 \\ -1 & -1 & 0 \end{bmatrix}$$

Problem 7: Calculate the following matrix determinants.

a) $\begin{vmatrix} 2 & 0 & 1 \\ 2 & 3 & 1 \\ 0 & 4 & -2 \end{vmatrix}$

b)	1	5	2	-4
	0	-2	3	1
	0	0	2	2
	0	0	0	3

(*Note:* You may use the rule for the determinant of a triangular matrix. If you forget the rule, you can calculate the determinant by hand, but just make sure to cleverly correct row/column for the cofactor expansion.)

Solutions:

- 1. No solution.
- 2. Not linearly independent. One possible linear combination is $2v_1 v_2 v_3 = 0$.
- 3. Sorry for the fractions, but

$$\mathbf{x} = \begin{bmatrix} 3/5 \\ -1/5 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2/5 \\ -1/5 \\ 1 \\ 0 \end{bmatrix} + r \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix}.$$

4.
$$A : \mathbb{R}^{5}(\text{domain}) \to \mathbb{R}^{3}(\text{codomain})$$

5. a) $\begin{bmatrix} 1 & -1 \\ 3 & 0 \\ 1 & 9 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
6. a) $A^{-1} = \begin{bmatrix} -1 & -3 \\ 1 & 2 \end{bmatrix}$ b) $B^{-1} = \begin{bmatrix} 2 & -1 & 5 \\ -2 & 1 & -6 \\ 1 & 0 & 3 \end{bmatrix}$
7. a) -12 b) -12